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Injective hulls of simple modules Lie superalgebras Ore extension

(�)

Let R be an associative unital ring.

Definition

(�) Injective hulls of simple left R-modules are locally Artinian.

(�) ⇔ any finitely generated essential extension of a simple left
R-module is Artinian.

Pathological cases are Artinian rings and V-rings.
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Injective hulls of simple modules Lie superalgebras Ore extension

Rings with (�)

Example

1 commutative Noetherian rings (Matlis);

2 FBN rings (Jategaonkar); (�)⇒ Jacobson Conjecture

3 ⇒ Noetherian PI-algebras;

4 Noetherian semiprime rings of Krull dimension 1.
⇒ A1(k) does satisfy (�).

5 kq[x , y ] or Aq
1(k) do satisfy (�) iff q ∈

√
1 (Carvalho-Musson)
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Injective hulls of simple modules Lie superalgebras Ore extension

Rings with (�)

k a field of characteristic 0. For a ring R let A1(R) = R[y ][x ; ∂
∂y ].

Example (Stafford)

An(k) = A1(An−1(k)) does not satisfy (�) if [k : Q] ≥ n − 1 ≥ 0.

Theorem (Carvalho-L.-Pusat, 2010)

Let A be Noetherian algebra over k = k (+more assumptions).
Then A satisfies (�) iff A/Am does for all m ∈ Max(Z (A)).

Example (Heisenberg Lie algebras)

Let hn = span(x1, . . . , xn, y1, . . . , yn, z) be the 2n + 1-dimensional
complex Heisenberg Lie algebra with relation [xi , yi ] = z for all i .
Then U(hn) satisfies (�) if and only if n = 1.
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Injective hulls of simple modules Lie superalgebras Ore extension

Musson’s example

Example (Musson ’82)

Let g = span(x , y) with [x , y ] = y . Then U(g) = k[y ][x ; y ∂
∂y ] does

not satisfy (�).

⇒ no f.d. solvable non-nilpotent Lie algebra g over
k = k , U(g) satisfies (�) (Bohro-Gabriel-Rentschler)

Question (1)

For which finite dimensional nilpotent g does U(g) satisfy (�) ?

Question (2)

For which derivation δ does k[y ][x ; δ] satisfy (�) ?
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Injective hulls of simple modules Lie superalgebras Ore extension

Question 1

Theorem (Hatipoğlu-L., 2012)

The following are equivalent for a finite dimensional complex
nilpotent Lie superalgebra g = g0 ⊕ g1.

(a) Injective hulls of simple U(g)-modules are loc. Artinian.

(b) ind(g0) = inff ∈g∗0
dim(gf

0) ≥ dim(g0)− 2.

(c) g0 has an abelian ideal of codimension 1 or g0 = h× a where
a is abelian and h is one of the following:

(i) h = span(e1, e2, e3, e4, e5) with

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5.

(ii) h = span(e1, e2, e3, e4, e5, e6) with

[e1, e2] = e6, [e1, e3] = e4, [e2, e3] = e5.

Christian Lomp Locally Artinian injective hulls of simples. 6/14



Injective hulls of simple modules Lie superalgebras Ore extension

Primitive factors of superalgebras

Theorem (Hatipoğlu-L., 2012)

Let A be a Noetherian associative superalgebra such that

1 every primitive ideal is maximal and

2 every graded maximal ideal is generated by a normalizing
sequence of generators.

Then

(a) injective hulls of a left simple A-module are loc. Artinian;

(b) injective hulls of a left simple A/P-module are loc. Artinian
for all primitive ideals P of A.

Theorem (Hatipoğlu-L., 2012)

Any ideal of a finite dimensional nilpotent Lie superalgebra has a
supercentralizing sequence of generators.
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Injective hulls of simple modules Lie superalgebras Ore extension

Primitive factors of nilpotent Lie superalgebras

Theorem (Bell-Musson 1990, Herscovich 2010)

Let g be a finite dimensional nilpotent complex Lie superalgebra.

1 For f ∈ g∗0 there exists a graded primitive ideal I (f ) of U(g)
such that

U(g)/I (f ) ' Cliffq(C)⊗ Ap(C),

where 2p = dim(g0/g
f
0) and q ≥ 0.

2 For every graded primitive ideal P of U(g) there exists f ∈ g∗0
such that P = I (f ).

We are left with classifying finite dimensional nilpotent Lie algebras
g with ind(g) = dim(g)− 2.
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Injective hulls of simple modules Lie superalgebras Ore extension

Question 2

Example (Musson ’82)

k[y ][x ; y ∂
∂y ] does not satisfy (�).

Question (2)

For which derivation δ does k[y ][x ; δ] satisfy (�) ?
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Injective hulls of simple modules Lie superalgebras Ore extension

(�) for Ore extensions

Theorem (Carvalho-Hatipoğlu-L., 2012)

Let R be a commutative Noetherian domain over k. Set
S = R[x ; δ] for some δ ∈ Derk(R). Suppose that

1 R is not δ-simple;

2 R is δ-primitive (D.Jordan), i.e. ∃ a maximal ideal m of R
that does not contain any non-zero δ-ideal.

3 every non-zero δ-ideal contains a non-zero Darboux element,
i.e. an element a with Ra being an δ-ideal.

Then

0 −→ S/Sm −→ S/Sm(x − 1) −→ S/S(x − 1) −→ 0

is a non-Artinian essential extension of the simple module S/Sm,
i.e S does not satisfies (�).
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Injective hulls of simple modules Lie superalgebras Ore extension

k[y ][x ;α, δ]

Corollary

k[y ][x ; δ] satisfies (�) iff δ = λ ∂
∂y for some λ ∈ k.

Corollary (Carvalho-Hatipoğlu-L., 2012)

The following are equivalent for an automorphism α and an
α-derivation δ of k[y ]:

1 injective hulls of simple k[y ][x ;α, δ]-modules are locally
Artinian;

2 α 6= id has finite order or α = id and δ is locally nilpotent.

3 k[y ][x ;α, δ] is isomorphic to Aq
1(k) or kq[x , y ] for q ∈

√
1.

Christian Lomp Locally Artinian injective hulls of simples. 11/14



Injective hulls of simple modules Lie superalgebras Ore extension

Locally nilpotent derivations

Theorem (Carvalho-Hatipoğlu-L., 2012)

Injective hulls of simple R[x ; δ]-modules are locally Artinian
provided δ is locally nilpotent and R is an affine commutative
k-algebra.

Sketch: Set a = span({δi (yj) | i ≥ 0, 1 ≤ j ≤ n}) and
g = kx ⊕ a ⊆ R[x ; δ]. Set

[x , δi (yj)] = δi+1(yj) ∀i , j

Then ∃U(g) � R[x ; δ] and as g is nilpotent and a is an abelian
ideal of codimensiom 1, U(g) and hence R[x ; δ] satisfies (�).
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Injective hulls of simple modules Lie superalgebras Ore extension

Locally nilpotent derivations II

Lemma

Let R be a domain with locally nilpotent derivation δ and y ∈ R
with δ(y) = 1. Set S = R[x ; δ]. For every a ∈ R \ Rδ consider

0 −→ S/S(x + a) −→ S/S(x + a)x −→ S/Sx −→ 0.

Then S/S(x + a) embeds essentially in S/S(x + a)x and
Kdim(SS/Sx) = Kdim(Rδ Rδ).

Hence if S(x − a) is maximal in S
and Rδ is not a division ring, then S does not satisfiy (�).

Example (Stafford, cf. Coutinho, Bernstein-Lunts)

For D = An−1(k) there exists a ∈ D[y ] such that x + a generates a
maximal left ideal in An(k) = A1(D) = D[y ][x ; ∂

∂y ].

R = A1(Q)[y ] satisfies (�) while A2(Q) = R[x ; ∂
∂y ] doesn’t.
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Injective hulls of simple modules Lie superalgebras Ore extension

Thank you
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