Noetherian rings whose injective hulls of simple modules are locally Artinian.

Christian Lomp

joint work with Paula Carvalho and Can Hatipoğlu

Universidade do Porto

2013-07-03

Let R be an associative unital ring.

Definition

 (\diamond) Injective hulls of simple left *R*-modules are locally Artinian.

< ∃⇒

Let R be an associative unital ring.

Definition

(\diamond) Injective hulls of simple left *R*-modules are locally Artinian.

 $(\diamond) \Leftrightarrow$ any finitely generated essential extension of a simple left *R*-module is Artinian.

▲ □ ► ▲ □ ►

Let R be an associative unital ring.

Definition

(\diamond) Injective hulls of simple left *R*-modules are locally Artinian.

 $(\diamond) \Leftrightarrow$ any finitely generated essential extension of a simple left *R*-module is Artinian.

Pathological cases are Artinian rings and V-rings.

▲ □ ► ▲ □ ►

Example

commutative Noetherian rings (Matlis);

Christian Lomp Locally Artinian injective hulls of simples. 3/14 U.PORTO

・ロト ・回ト ・ヨト

< ∃⇒

Example

- commutative Noetherian rings (Matlis);
- FBN rings (Jategaonkar);

<- ↓ ↓ < ≥ >

→ 三→

Example

- commutative Noetherian rings (Matlis);
- **2** FBN rings (Jategaonkar); $(\diamond) \Rightarrow$ Jacobson Conjecture

→ 同 → → 目 →

Example

- commutative Noetherian rings (Matlis);
- **2** FBN rings (Jategaonkar); $(\diamond) \Rightarrow$ Jacobson Conjecture
- $\mathbf{3} \Rightarrow \mathsf{Noetherian} \mathsf{PI-algebras};$

→ 同 → → 目 →

Example

- commutative Noetherian rings (Matlis);
- **2** FBN rings (Jategaonkar); $(\diamond) \Rightarrow$ Jacobson Conjecture
- $\mathbf{3} \Rightarrow \mathsf{Noetherian} \mathsf{PI-algebras};$
- O Noetherian semiprime rings of Krull dimension 1.

▲ □ ► ▲ □ ►

Example

- commutative Noetherian rings (Matlis);
- **2** FBN rings (Jategaonkar); $(\diamond) \Rightarrow$ Jacobson Conjecture
- $\mathbf{3} \Rightarrow \mathsf{Noetherian} \mathsf{PI-algebras};$
- O Noetherian semiprime rings of Krull dimension 1.
 ⇒ A₁(k) does satisfy (◊).

▲ □ ► ▲ □ ►

Example

- commutative Noetherian rings (Matlis);
- **2** FBN rings (Jategaonkar); $(\diamond) \Rightarrow$ Jacobson Conjecture
- $\mathbf{3} \Rightarrow \mathsf{Noetherian} \mathsf{PI-algebras};$
- O Noetherian semiprime rings of Krull dimension 1.
 ⇒ A₁(k) does satisfy (◊).
- $\ \, {\bf S} \ \, k_q[x,y] \ \, {\rm or} \ \, {\cal A}_1^q(k) \ \, {\rm do} \ \, {\rm satisfy} \ \, (\diamond) \ \, {\rm iff} \ \, q \in \sqrt{1} \ \, ({\sf Carvalho-Musson})$

k a field of characteristic 0. For a ring R let $A_1(R) = R[y][x; \frac{\partial}{\partial y}]$.

Example (Stafford)

 $A_n(k) = A_1(A_{n-1}(k))$ does not satisfy (\diamond) if $[k:\mathbb{Q}] \ge n-1 \ge 0$.

k a field of characteristic 0. For a ring R let $A_1(R) = R[y][x; \frac{\partial}{\partial y}]$.

Example (Stafford)

 $A_n(k) = A_1(A_{n-1}(k))$ does not satisfy (\diamond) if $[k:\mathbb{Q}] \ge n-1 \ge 0$.

Theorem (Carvalho-L.-Pusat, 2010)

Let A be Noetherian algebra over $k = \overline{k}$ (+more assumptions). Then A satisfies (\diamond) iff A/Am does for all $\mathfrak{m} \in Max(Z(A))$.

k a field of characteristic 0. For a ring R let $A_1(R) = R[y][x; \frac{\partial}{\partial y}]$.

Example (Stafford)

 $A_n(k) = A_1(A_{n-1}(k))$ does not satisfy (\diamond) if $[k:\mathbb{Q}] \ge n-1 \ge 0$.

Theorem (Carvalho-L.-Pusat, 2010)

Let A be Noetherian algebra over $k = \overline{k}$ (+more assumptions). Then A satisfies (\diamond) iff A/Am does for all $\mathfrak{m} \in Max(Z(A))$.

Example (Heisenberg Lie algebras)

Let $\mathfrak{h}_n = \operatorname{span}(x_1, \ldots, x_n, y_1, \ldots, y_n, z)$ be the 2n + 1-dimensional complex Heisenberg Lie algebra with relation $[x_i, y_i] = z$ for all *i*. Then $U(\mathfrak{h}_n)$ satisfies (\diamond) if and only if n = 1.

イロト イポト イヨト イヨト

Example (Musson '82)

Let $\mathfrak{g} = \operatorname{span}(x, y)$ with [x, y] = y. Then $U(\mathfrak{g}) = k[y][x; y\frac{\partial}{\partial y}]$ does not satisfy (\diamond).

・ 同・ ・ ヨ・

Example (Musson '82)

Let $\mathfrak{g} = \operatorname{span}(x, y)$ with [x, y] = y. Then $U(\mathfrak{g}) = k[y][x; y\frac{\partial}{\partial y}]$ does not satisfy (\diamond). \Rightarrow no f.d. solvable non-nilpotent Lie algebra \mathfrak{g} over $k = \overline{k}, U(\mathfrak{g})$ satisfies (\diamond) (Bohro-Gabriel-Rentschler)

・同 とくほ とくほ とう

Example (Musson '82)

Let $\mathfrak{g} = \operatorname{span}(x, y)$ with [x, y] = y. Then $U(\mathfrak{g}) = k[y][x; y\frac{\partial}{\partial y}]$ does not satisfy (\diamond). \Rightarrow no f.d. solvable non-nilpotent Lie algebra \mathfrak{g} over $k = \overline{k}$, $U(\mathfrak{g})$ satisfies (\diamond) (Bohro-Gabriel-Rentschler)

Question (1)

For which finite dimensional nilpotent g does U(g) satisfy (\diamond) ?

・ロト ・回ト ・ヨト ・ヨト

Example (Musson '82)

Let $\mathfrak{g} = \operatorname{span}(x, y)$ with [x, y] = y. Then $U(\mathfrak{g}) = k[y][x; y\frac{\partial}{\partial y}]$ does not satisfy (\diamond). \Rightarrow no f.d. solvable non-nilpotent Lie algebra \mathfrak{g} over $k = \overline{k}$, $U(\mathfrak{g})$ satisfies (\diamond) (Bohro-Gabriel-Rentschler)

Question (1)

For which finite dimensional nilpotent g does U(g) satisfy (\diamond) ?

Question (2)

For which derivation δ does $k[y][x; \delta]$ satisfy (\diamond) ?

イロト イヨト イヨト イヨト

Question 1

Theorem (Hatipoğlu-L., 2012)

The following are equivalent for a finite dimensional complex nilpotent Lie superalgebra $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$.

- (a) Injective hulls of simple $U(\mathfrak{g})$ -modules are loc. Artinian.
- (b) $\operatorname{ind}(\mathfrak{g}_0) = \operatorname{inf}_{f \in \mathfrak{g}_0^*} \dim(\mathfrak{g}_0^f) \ge \dim(\mathfrak{g}_0) 2.$
- (c) \mathfrak{g}_0 has an abelian ideal of codimension 1 or $g_0 = \mathfrak{h} \times \mathfrak{a}$ where \mathfrak{a} is abelian and \mathfrak{h} is one of the following:

(i) $\mathfrak{h} = \operatorname{span}(e_1, e_2, e_3, e_4, e_5)$ with

$$[e_1,e_2]=e_3,\ [e_1,e_3]=e_4,\ [e_2,e_3]=e_5.$$

(ii) $\mathfrak{h} = \mathrm{span}(e_1, e_2, e_3, e_4, e_5, e_6)$ with

$$[e_1,e_2]=e_6,\ [e_1,e_3]=e_4,\ [e_2,e_3]=e_5.$$

イロト イポト イヨト イヨト

Primitive factors of superalgebras

Theorem (Hatipoğlu-L., 2012)

Let A be a Noetherian associative superalgebra such that

- every primitive ideal is maximal and
- every graded maximal ideal is generated by a normalizing sequence of generators.

Then

- (a) injective hulls of a left simple A-module are loc. Artinian;
- (b) injective hulls of a left simple A/P-module are loc. Artinian for all primitive ideals P of A.

A (1) < A (1) </p>

Primitive factors of superalgebras

Theorem (Hatipoğlu-L., 2012)

Let A be a Noetherian associative superalgebra such that

- every primitive ideal is maximal and
- every graded maximal ideal is generated by a normalizing sequence of generators.

Then

- (a) injective hulls of a left simple A-module are loc. Artinian;
- (b) injective hulls of a left simple A/P-module are loc. Artinian for all primitive ideals P of A.

Theorem (Hatipoğlu-L., 2012)

Any ideal of a finite dimensional nilpotent Lie superalgebra has a supercentralizing sequence of generators.

Primitive factors of nilpotent Lie superalgebras

Theorem (Bell-Musson 1990, Herscovich 2010)

Let \mathfrak{g} be a finite dimensional nilpotent complex Lie superalgebra.

For f ∈ g₀^{*} there exists a graded primitive ideal I(f) of U(g) such that

 $U(\mathfrak{g})/I(f)\simeq \operatorname{Cliff}_q(\mathbb{C})\otimes A_p(\mathbb{C}),$

where $2p = \dim(\mathfrak{g}_0/\mathfrak{g}_0^f)$ and $q \ge 0$.

 Por every graded primitive ideal P of U(g) there exists f ∈ g₀^{*} such that P = I(f).

▲ □ ► ▲ □ ►

Primitive factors of nilpotent Lie superalgebras

Theorem (Bell-Musson 1990, Herscovich 2010)

Let \mathfrak{g} be a finite dimensional nilpotent complex Lie superalgebra.

For f ∈ g₀^{*} there exists a graded primitive ideal I(f) of U(g) such that

 $U(\mathfrak{g})/I(f)\simeq \operatorname{Cliff}_q(\mathbb{C})\otimes A_p(\mathbb{C}),$

where $2p = \dim(\mathfrak{g}_0/\mathfrak{g}_0^f)$ and $q \ge 0$.

 Por every graded primitive ideal P of U(g) there exists f ∈ g₀^{*} such that P = I(f).

We are left with classifying finite dimensional nilpotent Lie algebras \mathfrak{g} with $\operatorname{ind}(\mathfrak{g}) = \operatorname{dim}(\mathfrak{g}) - 2$.

Question 2

Example (Musson '82)

$$k[y][x; y\frac{\partial}{\partial y}]$$
 does not satisfy (\diamond).

Question (2)

For which derivation δ does $k[y][x; \delta]$ satisfy (\diamond) ?

イロン イヨン イヨン イヨン

(\diamond) for Ore extensions

Theorem (Carvalho-Hatipoğlu-L., 2012)

Let R be a commutative Noetherian domain over k. Set $S = R[x; \delta]$ for some $\delta \in Der_k(R)$. Suppose that

- **1** *R* is not δ -simple;
- ② R is δ-primitive (D.Jordan), i.e. ∃ a maximal ideal m of R that does not contain any non-zero δ-ideal.
- every non-zero δ-ideal contains a non-zero Darboux element, i.e. an element a with Ra being an δ-ideal.

(\diamond) for Ore extensions

Theorem (Carvalho-Hatipoğlu-L., 2012)

Let R be a commutative Noetherian domain over k. Set $S = R[x; \delta]$ for some $\delta \in Der_k(R)$. Suppose that

- **1** *R* is not δ -simple;
- ② R is δ-primitive (D.Jordan), i.e. ∃ a maximal ideal m of R that does not contain any non-zero δ-ideal.
- every non-zero δ-ideal contains a non-zero Darboux element, i.e. an element a with Ra being an δ-ideal.

Then

$$0 \longrightarrow S/Sm \longrightarrow S/Sm(x-1) \longrightarrow S/S(x-1) \longrightarrow 0$$

is a non-Artinian essential extension of the simple module S/Sm, i.e S does not satisfies (\diamond).

$k[y][x; \alpha, \delta]$

Corollary

$$k[y][x; \delta]$$
 satisfies (\diamond) iff $\delta = \lambda \frac{\partial}{\partial y}$ for some $\lambda \in k$.

Corollary (Carvalho-Hatipoğlu-L., 2012)

The following are equivalent for an automorphism α and an α -derivation δ of k[y]:

- injective hulls of simple k[y][x; α, δ]-modules are locally Artinian;
- **2** $\alpha \neq id$ has finite order or $\alpha = id$ and δ is locally nilpotent.
- **3** $k[y][x; \alpha, \delta]$ is isomorphic to $A_1^q(k)$ or $k_q[x, y]$ for $q \in \sqrt{1}$.

イロン イヨン イヨン イヨン

Locally nilpotent derivations

Theorem (Carvalho-Hatipoğlu-L., 2012)

Injective hulls of simple $R[x; \delta]$ -modules are locally Artinian provided δ is locally nilpotent and R is an affine commutative k-algebra.

・ 同・ ・ ヨ・

Locally nilpotent derivations

Theorem (Carvalho-Hatipoğlu-L., 2012)

Injective hulls of simple $R[x; \delta]$ -modules are locally Artinian provided δ is locally nilpotent and R is an affine commutative k-algebra.

Sketch: Set $\mathfrak{a} = \operatorname{span}(\{\delta^i(y_j) \mid i \ge 0, 1 \le j \le n\})$ and $\mathfrak{g} = kx \oplus \mathfrak{a} \subseteq R[x; \delta]$. Set

$$[x,\delta^i(y_j)] = \delta^{i+1}(y_j) \qquad \forall i,j$$

Then $\exists U(\mathfrak{g}) \rightarrow R[x; \delta]$ and as \mathfrak{g} is nilpotent and \mathfrak{a} is an abelian ideal of codimensiom 1, U(g) and hence $R[x; \delta]$ satisfies (\diamond).

イロト イポト イヨト イヨト

Locally nilpotent derivations II

Lemma

Let R be a domain with locally nilpotent derivation δ and $y \in R$ with $\delta(y) = 1$. Set $S = R[x; \delta]$. For every $a \in R \setminus R^{\delta}$ consider

$$0 \longrightarrow S/S(x+a) \longrightarrow S/S(x+a)x \longrightarrow S/Sx \longrightarrow 0.$$

Then S/S(x + a) embeds essentially in S/S(x + a)x and $\operatorname{Kdim}(_{S}S/Sx) = \operatorname{Kdim}(_{R^{\delta}}R^{\delta})$.

イロン イヨン イヨン イヨン

Locally nilpotent derivations II

Lemma

Let R be a domain with locally nilpotent derivation δ and $y \in R$ with $\delta(y) = 1$. Set $S = R[x; \delta]$. For every $a \in R \setminus R^{\delta}$ consider

$$0 \longrightarrow S/S(x+a) \longrightarrow S/S(x+a)x \longrightarrow S/Sx \longrightarrow 0.$$

Then S/S(x + a) embeds essentially in S/S(x + a)x and $\operatorname{Kdim}(_{S}S/Sx) = \operatorname{Kdim}(_{R^{\delta}}R^{\delta})$. Hence if S(x - a) is maximal in S and R^{δ} is not a division ring, then S does not satisfy (\diamond) .

Locally nilpotent derivations II

Lemma

Let R be a domain with locally nilpotent derivation δ and $y \in R$ with $\delta(y) = 1$. Set $S = R[x; \delta]$. For every $a \in R \setminus R^{\delta}$ consider

$$0 \longrightarrow S/S(x+a) \longrightarrow S/S(x+a)x \longrightarrow S/Sx \longrightarrow 0.$$

Then S/S(x + a) embeds essentially in S/S(x + a)x and $\operatorname{Kdim}(_{S}S/Sx) = \operatorname{Kdim}(_{R^{\delta}}R^{\delta})$. Hence if S(x - a) is maximal in S and R^{δ} is not a division ring, then S does not satisfy (\diamond) .

Example (Stafford, cf. Coutinho, Bernstein-Lunts)

For $D = A_{n-1}(k)$ there exists $a \in D[y]$ such that x + a generates a maximal left ideal in $A_n(k) = A_1(D) = D[y][x; \frac{\partial}{\partial y}]$.

 $R = A_1(\mathbb{Q})[y]$ satisfies (\diamond) while $A_2(\mathbb{Q}) = R[x; \frac{\partial}{\partial y}]$ doesn't.

Thank you

Christian Loop Locally Artinian injective hulls of simples. 14/14 U.PORTO

・ロト ・回ト ・ヨト ・ヨト

æ